Class VIII Session 2023-24 Subject - Maths Sample Question Paper - 10

Time Al	lowed: 3 hours	Maximum M	1arks: 80
	5	Section A	
1.	One (1) is:		[1]
	a) the identity for the subtraction of rational numbers	b) the identity for division of rational numbers	
	c) the identity for the addition of rational numbers	d) the identity for multiplication of rational numbers	
2.	The value of x for which the expressions $3x - 4$ and $2x + 1$ become equal is		[1]
	a) 5	b) -3	
	c) 0	d) 1	
3.	A trapezium in which non-parallel sides are equal is said to be		[1]
	a) Scalene trapezium	b) Equilateral trapezium	
	c) Isosceles trapezium	d) Right trapezium	
4.	The probability of getting not more than 7 in rolling of a dice is		[1]
	a) 1	b) $\frac{1}{2}$	
	c) $\frac{1}{7}$	d) $\frac{1}{4}$	
5.	By which smallest natural number should 128 be d	ivided so that the quotient is a perfect cube?	[1]
	a) 6	b) 4	
	c) 3	d) 2	
6.	A TV set was bought for ₹26250 including 5% VAT. The original price of the TV set is		[1]
	a) ₹26245	b) ₹27562.50	
	c) ₹28000	d) ₹25000	
7.	Add: a - b + ab, b - c + bc, c - a + ac		
	a) ab + bc + ac	b) ab + bc	
	c) a + b + c	d) abc	
8.	Simplify: $\left[\left\{\left(\frac{-1}{5}\right)^{-2}\right\}^2\right]^{-1}$		[1]
	a) $\frac{5}{625}$	b) $\frac{1}{652}$	
	c) $\frac{1}{625}$	d) $\frac{-1}{625}$	
	Pag	e 1 of 10	

Get More Learning Materials Here : 📕

9. A train can finish a journey in 10 hours, travelling at a speed of 56 km/h. If another faster train is to cover the [1] same journey in 8 hours, what would be the average speed of the new train?

a) 50 km/h	b) 80 km/h
c) 60 km/h	d) 70 km/h

10. The line graph shows the monthly expenditure of the the Vasu family. The difference between their highest and [1] lowest monthly expenditure is:

Get More Learning Materials Here : 📕

11.

12.

13.

14.

15.

16.

17.

18.

- 20. There are 500 children in a school. For a P.T. drill they have to stands in such a manner that the number of rows **[3]** is equal to number of columns. How many children would be left out in this arrangement.
- A man gives 40% of his money to his children and 20% of the remaining to a trust. If he is still left with ₹ 9600, [3] what is the amount did he originally have?
- 22. Add $p^3 1$, $p^3 + p + 2$ and $p^2 2p + 1$.
- 23. A milk tank is in the form of cylinder whose radius is 1.5 m and length is 7 m. Find the quantity of milk in litres [3] that can be stored in the tank?

- 24. Compare the numbers $2.7 imes 10^{12}$ and $1.5 imes 10^{8}$
- 25. If a and b vary inversely to each other, then find the values of p, q, r ; x, y, z and l, m, n.

a	6	8	q	25
b	18	р	39	r

26. In a district, the number of branches of different banks is given below:

Bank	State Bank of India	Bank of Baroda	Punjab National Bank	Canara Bank
Number of branches	30	17	15	10

Draw a pie chart for this data.

27. Arunima bought household items whose marked price and discount % is as follows

[4]

Item	Quantity	Rate (in ₹)	Discount%
(i) Atta	1 packet	200	16%
(ii) Detergent	1 packet	371	22.10%
(ii) Namkeen	1 packet	153	18.30%

Find the total amount of the bill she has to pay.

28. What must be added to sum of $x^2 - 4x + 7$ and $2x^2 + 5x - 9$ is to get 0.

29. Describe how the two figures at the right are alike and how they are different. Which box has larger lateral [4] surface area?

- 30. Factorize $x^4 y^4$
- 31. Study the graph given below of a person who started from his home and returned at the end of the day. Answer [4]

[4]

[4]

Get More Learning Materials Here : 📕

[3]

[3]

[3]

[4]

the questions that follow.

- a. At what time did the person start from his home?
- b. How much distance did he travel in the first four hours of his journey?
- c. What was he doing from 3 PM to 5 PM?
- d. What was the total distance travelled by him throughout the day?
- e. Calculate the distance covered by him in the first 8 hours of his journey.
- f. At what time did he cover 16 km of his journey?
- g. Calculate the average speed of the man from A to B and B to C.
- h. At what time did he return home?

Page 4 of 10

Solution

Section A

1.

(d) the identity for multiplication of rational numbers

Explanation: One (1) is the identity for multiplication of rational numbers. That means, If a is a rational number. Then, a.1 = 1.a = a

2. **(a)** 5

Explanation: When the value of x is 5 then both the expressions will be equal.

Proof 3x - 4 = 2x + 1x = 5

```
3.
```

(c) Isosceles trapeziumExplanation: Isosceles trapezium

4. **(a)** 1

Explanation: 1

5.

(d) 2

Explanation: $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

one 2 is left out and could not make a triplet, so 2 is the smallest natural number by which 128 should be divided so that the quotient is a perfect cube.

6.

(d) ₹25000 Explanation: The cost price of TV set = ₹26250. VAT including = 5% ∴ Original price = $26250 \times \frac{100}{105}$ = ₹ 25000 Hence, ₹25000 is correct.

7. **(a)** ab + bc + ac

Explanation: (a - b + ab) + (b - c + bc) + (c - a + ac)opening brackets we get, a - b + ab + b - c + bc + c - a + acsolving like terms and unlike terms we get, a - a - b + b - c + c + ab + bc + ac0 + 0 + 0 + ab + bc + acab + bc + ac

8.

(c) $\frac{1}{625}$

Explanation: Given expression can be written as

$$\left[\left(\frac{-1}{5}\right)^{-2} \right]^{2 \times (-1)} \left[\text{using } (\mathbf{x}^{\mathrm{m}})^{\mathrm{n}} = \mathbf{x}^{\mathrm{m} \times \mathrm{n}} \right]$$
$$\Rightarrow \left[\left(\frac{-1}{5}\right)^{-2} \right]^{-2} = \left(\frac{-1}{5}\right)^{(-2) \times (-2)}$$
$$= \left(\frac{-1}{5}\right)^{4}$$
$$= \frac{(-1)^{4}}{(5)^{4}} \left[\text{using } \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \right] = \frac{1}{625}$$

Page 5 of 10

9.

(d) 70 km/h

Explanation: Speed and time are inversely related so with a decrease in time duration the speed has to increase to complete the journey.

In inverse proportion, the value of constant is given by $x \times y$ $10 \times 56 = 8 \times a$ (where a is the average speed of the train) $\frac{560}{8} = a$ 70 km / hr = a

10.

(d) ₹ 400

Explanation: Month with highest expenditure= February Month with lowest expenditure = April Difference in expenditure = 600 - 200 = 400

Section B

11. Fill in the blanks:

(i) 1. Rational

(ii) 1.7

(iii) 1. triangle

(iv) 1. Random

(v) 1.6

(vi) 1. Selling Price

(vii) 1. 3

(viii)1. 9.6

(ix) 1.2

(x) 1. Straight

2

Section C

12. Given,
$$x = \frac{2}{3}, y = \frac{2}{6}$$
 and $z = \frac{1}{9}$
Now, LHS = $x \times (y + z) = \frac{-2}{3} \times \left(\frac{-4}{6} + \frac{-7}{9}\right) = \frac{-2}{3} \times \left(\frac{-4}{6} - \frac{7}{9}\right)$
 $= \frac{-2}{3} \times \left(\frac{-12 - 14}{18}\right) = \frac{-2}{3} \times \frac{-26}{18} = \frac{26}{27}$
and RHS = $x \times y + x \times z = \frac{-2}{3} \times \left(\frac{-4}{6}\right) + \left(\frac{-2}{3}\right) \times \left(\frac{-7}{9}\right) = \frac{4}{9} + \frac{14}{27} = \frac{12 + 14}{27} = \frac{26}{27}$
 \therefore LHS = RHS

-7

Hence, $\mathbf{x} \times (\mathbf{y} + \mathbf{z}) = \mathbf{x} \times \mathbf{y} + \mathbf{x} \times \mathbf{z}$

13. 1057. The number 1057 is not a perfect square because it ends with 7 whereas the square numbers end with 0, 1, 4, 5, 6 or 9.
2 46656

2	40050		
2	23328		
2	11664		
2	5832		
2	2916		
2	1458		
3	729		
3	243		
3	81		
3	27		
3	9		
3	3		
	1		

14.

By prime factorisation,

Page 6 of 10

Get More Learning Materials Here : 💻

 $= 2^3 \times 2^3 \times 3^3 \times 3^3$

= 36^3 which is a perfect cube.

All the terms form triplets

Therefore, 46656 is a perfect cube.

$$12a - 9ab + 5b - 3$$

$$15. - 4a - 7ab + 3b + 12$$

$$- + - -$$

$$8a - 2ab + 2b - 15$$

16. Dimensions of the rectangular base tank are 80 cm \times 70 cm Height of rectangle base tank = 45 cm

Each side of square base tank = 60 cm Let h be the height of the square base tank.

Volume of rectangular base tank = Volume of a square base tank

 $\Rightarrow 80 \times 70 \times 45 = 60 \times 60 \times h [:: volume of the tank = volume of cuboid = 1 \times b \times h]$

 $\Rightarrow \frac{80 \times 70 \times 45}{60 \times 60} = h$

 \therefore h = 70 cm

Hence, water in the second tank will be 70 cm deep.

17. $3x^2y^3 = 3 \times x \times x \times y \times y \times y$

 $10x^{3}y^{2} = 2 \times 5 \times x \times x \times x \times y \times y$ $6x^{2}y^{2}z = 2 \times 3 \times x \times x \times y \times y \times z$ Hence the common factors are x, x, y, y

and $r \times r \times u \times u = x^2 y^2$

and
$$x \times x \times y \times y \times y = x$$
 y
18. $\frac{2x}{3} + 1 = \frac{7x}{15} + 3$
 $\frac{2x}{3} - \frac{7x}{15} = 3 - 1 \dots$ [Transposing $\frac{7x}{15}$ to L.H.S. and 1 to R.H.S.]
 $\therefore \frac{2x}{3} - \frac{7x}{15} = 2$
 $\therefore 15\left(\frac{2x}{3} - \frac{7x}{15}\right) = 2 \times 15 \dots$ [Multiplying both sides by 15]
 $\therefore 10x - 7x = 30$
 $\therefore 3x = 30$
 $\therefore x = \frac{30}{3} \dots$ [Dividing both sides by 3]
 $\therefore x = 10$ this is the required solution.
Verification,
L.H.S. $= \frac{2x}{3} + 1 = \frac{2}{3}(10) + 1 = \frac{20+3}{3} = \frac{23}{3}$
R.H.S. $= \frac{7x}{15} + 3 = \frac{7}{15}(10) + 3 = \frac{70}{15} + 3 = \frac{70+5}{15+5} + 3 = \frac{14+9}{3} = \frac{23}{3}$
Therefore, L.H.S. = R.H.S.
19. We have, two parallelograms ABDH and CEFG.
Now, in ABDH,
 $\therefore \angle ABD = \angle AHD = 130^{\circ}$ [\because opposite angles of a parallelogram are equal]

and $\angle GHD = 180^{\circ} - \angle AHD = 180^{\circ} - 130^{\circ}$ [linear pair]

 \Rightarrow 50° = \angle GHO

Also, \angle EFG + \angle FGC = 180° [: adjacent angles of a parallelogram are supplementary] \Rightarrow 30° + \angle FGC= 180° $\Rightarrow \angle$ FGC = 180°- 30° = 150°

and \angle HGC + \angle FGC = 180° [linear pair]

 $\therefore \angle \text{HGC} = 180^\circ - \angle \text{FGC} = 180^\circ - 150^\circ = 30^\circ = \angle \text{HGO}$

In Δ HGO, by using angle sum property, \angle OHG + \angle HGO + \angle HOG = 180°

 \Rightarrow 50° + 30° + x = 180° \Rightarrow x = 180° - 80° =100°

20. Let the number of rows be x

Then the number of columns in x

So, the number of plants is $x \times x = x^2$

which is a perfect square.

Let us find out the square root of 500 by division method.

Page 7 of 10

Get More Learning Materials Here : 📕

We get the remainder 16. It shows that 22^2 is less than 500 by 16. This means that 16 children would be left out in this arrangement. 21. Let the original amount of money with him = ₹ 100

Money given to children = 40% of original money

$$=rac{40}{100} imes 100 = ₹40$$

Remaining money = ₹ 100 - ₹ 40 = ₹ 60

Money given to trust = 20% of the remaining money

 $= \frac{20}{100} \times 60 = ₹12$

Left over money = ₹ 60 - 12 = ₹ 48

But, given left over money = ₹ 9600

When left over money is Rs. 48, original money = \gtrless 100 If leftover money is Rs.9600, the original money $= \frac{9600 \times 100}{48} =$ ₹20,000 .

 p^3 -1

22.
$$+ p^3 + p^2 + p^2$$

+ $p^2 - 2p + 1$

$$\frac{1}{2p^3+p^2-p+2}$$

23. For milk tank

r = 1.5 m h = 7 m \therefore Capacity = $\pi r^2 h$ $=rac{22}{7} imes 1.5 imes 1.5 imes 7$ $=\frac{22}{7} \times \frac{15}{10} \times \frac{15}{10} \times 7$ $= 49.5 \text{ m}^3$ = 49.5 \times 1000 L [: 1 m³ = 1000 L]

= 49500 L Hence, the quantity of milk that can be stored in the tank is 49500 litres.

24. $2.7 imes 10^{12} = 2.7 imes (10 imes 10^{11}) = (2.7 imes 10) imes 10^{11} = 27 imes 10^{11}$ $1.5 imes 10^8 = 1.5 imes (10 imes 10^7) = (1.5 imes 10) imes 10^7 = 15 imes 10^7$ Now, 27 > 15 and $10^{11} > 10^7$ Therefore, $27 imes 10^{11} > 15 imes 10^7$ Hence, $2.7 imes 10^{12} > 1.5 imes 10^8$

25.

6 8 25 а q 39 b 18 r р

If a = 6 and b = 18Then; a \times b = 6 \times 18 = 108 \Rightarrow k = 108 When a = 8 and b = p, then ab = k \Rightarrow 8 \times p = 108 \Rightarrow 8 \times p = 108 [putting the value of k] $\Rightarrow p = \frac{27}{2}$ When a = q and b = 39, then ab = k $q \times 39 = 108$ [putting the value of k]

Page 8 of 10

 $\Rightarrow q = \frac{108}{39} = \frac{36}{13}$ When a = 25 and b = r, then ab = k $\Rightarrow 25 \times r = 108 \text{ [putting the value of k]}$ $\Rightarrow r = \frac{108}{25}$

26. Total number of branches = 30+17 + 15+10 = 72

Bank	Number of branches	Central angle
State Bank of India	30	${30\over 72} imes 360^{\circ} = 150^{\circ}$
Bank of Baroda	17	$rac{17}{72} imes 360^\circ=85^\circ$
Punjab National Bank	15	$rac{15}{72} imes 360^\circ=75^\circ$
Canara Bank	10	$rac{10}{72} imes 360^\circ = 50^\circ$

The pie chart is as follows:

27. From the given data in the table,

Rate of one packet of atta = ₹200 Discount % = 16% So, price after discount = 200 - $\frac{16}{100} \times 200$ = 200 - 32 = ₹168 Rate of one packet of detergent = ₹371 Discount % = 22.10% So, price after discount = 371 - 371 $\times \frac{22.10}{100}$ = 371 - 81.991 = ₹289.009 Rate of one packet of namkeen = 153 Discount% = 18.30% So, price after discount = 153 - 153 $\times \frac{18.30}{100}$ = 153- 1.53 × 18.30 = 153 - 27.999 = ₹125.001 ∴ Total bill amount to be paid = ₹168 + ₹289.009 + ₹125.001 = ₹582.01 28. The number = $0 - [(x^2 - 4x + 7) + (2x^2 + 5x - 9)]$ $= 0 - [x^2 - 4x + 7 + 2x^2 + 5x - 9]$ $= 0 - [3x^2 + x - 2]$ $=-3x^2 - x + 2$ 29. Similarity \rightarrow Both have same height. Difference \rightarrow One is a cylinder, the other is a cube. For the first figure $r = \frac{7}{2}cm$ h = 7 cm \therefore Lateral surface area = $2\pi rh$ $=2 imesrac{22}{7} imesrac{7}{2} imes 7$

Page 9 of 10

Get More Learning Materials Here : 📕

= 154 cm^2 For second figure l = 7 cmb = 7 cm \therefore Lateral surface area = $4l^2$ $= 4 \times (7)^2$ = 196 cm^2

Hence, the second box has the larger lateral surface area.

30. $x^4 - y^4 = (x^2)^2 - (y^2)^2$

 $= (x^2 - y^2)(x^2 + y^2)$ Using $a^2 - b^2 = (a + b)(a - b)$

 $= (x - y)(x + y)(x^{2} + y^{2})$ Using $a^{2} - b^{2} = (a + b)(a - b)$

31. After observing the graph carefully, it is clear that

a. At 10 AM, the person starts from his home.

b. In the first 4 h (i.e. till 2 PM), he travelled 16 km.

c. The person was taking rest from 3 PM to 5 PM.

d. The total distance covered by the person throughout the day was 40 km, i.e. 20 km from A to B and then 20 km from C to D.

e. The distance covered by him in the first 8 h i.e. from 10 AM to 6 PM was 24 km.

f. He covered 16 km of his journey at 2 PM.

g. The total distance covered from A to B = 20 km and the time taken to travel from A to B = 5 h

 \therefore The average speed of the man from A to B = $\frac{20}{5}$ = 4 km/h

and average speed from B to C = $\frac{0}{2}$ = 0 km/h

h. He returned home at 10 PM.

Page 10 of 10